
On the transition from conduction to convection regime in a
cubical enclosure with a partially heated wall

Ram�on L. Frederick *, Fernando Quiroz

Departamento de Ingenier�õa Mec�anica, Universidad de Chile, Casilla 2777, Santiago, Chile

Received 13 January 2000; received in revised form 22 June 2000

Abstract

Steady-state laminar natural convection in a cubical enclosure with a cold vertical wall and a hot square sector on

the opposite wall is numerically studied. The ¯ow pattern consists of a single, symmetric circulation cell. The transition

from conduction to convection regime ends at Ra� 105, and is characterized by conduction suppression and slow

development of convection. In the range of Ra� 105±107, lateral velocities become very large, producing a highly

mixed, thermally strati®ed three-dimensional ¯ow, and the circulation cell undergoes cross-sectional changes. In the

whole range of Ra, the Nusselt number is reduced compared to the case in which the full side wall is hot (test

case). Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection in enclosures continues to be a

very active area of research. There is abundant numer-

ical work in this area using two-dimensional solutions.

However, any assumption of two-dimensionality is only

an approximation to the actual behavior, which is

always three-dimensional. Not all the problems of con-

®ned natural convection possess a two-dimensional

version, and when it can be de®ned, the degree of

compliance of the ¯ow to the two-dimensional as-

sumption varies in the range of Rayleigh number. A

three-dimensional approach, being more realistic, can

detect phenomena not seen in the two-dimensional ver-

sion. Since the works of Fusegi et al. [1], Janssen et al.

[2], Lee and Lin [3] and others, three-dimensional nu-

merical solutions often appear in the literature. These

authors have studied ¯ow structures, thermal ®elds, and

stability conditions in vertical and inclined cubical en-

closures with sidewall heating and cooling.

At variance with the sidewall heated case (test

problem) [1,2], miniaturization of electronic components

often leads to the designing of systems with active sur-

faces of di�erent areas. The inequality in the size of the

sources causes delays in the transition from conduction

to convection regime to higher Rayleigh numbers rela-

tive to the test problem. As buoyancy forces on the ¯uid

depend on the size of the active sources, ¯uid mixing in

the core of the enclosure is made di�cult. Well-mixed

¯uid, characteristic of a fully convective regime, is at-

tained at higher values of Ra than in the test case. A

Rayleigh number of 4� 105 has been proposed for the

onset of the fully convective regime in some situations

[4,5]. In the test case, convective regime apparently sets

in at a Rayleigh number of 103.

Three-dimensional studies originating from applica-

tions to the cooling of electronic components, often use

conditions of prescribed heat ¯ux [6±8]. This condition,

although realistic in that ®eld, does not allow a com-

parison of ¯ow and heat transfer mechanisms and their

dependence on Ra with the ones found in the test

problem. Little attention has been given to three-di-

mensional cases, lacking a two-dimensional counterpart,

with isothermal active surfaces. These cases are of fun-

damental and practical importance, because the relative

position of the active sources, as well as their size,

International Journal of Heat and Mass Transfer 44 (2001) 1699±1709
www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +56-2-678-4448; fax: +56-2-

698-8453.

E-mail address: rfrederi@cec.uchile.cl (R.L. Frederick).

0017-9310/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 1 7 - 9 3 1 0 ( 0 0 ) 0 0 2 1 9 - 2



determine the circulation modes, temperature ®elds and

heat transfer. Poulikakos [9] studied the two-dimen-

sional natural convection in a rectangular cavity with

hot and cold elements of equal size on the same vertical

wall. Kuhn and Oosthuizen [10] studied the two-di-

mensional transient natural convection in a partially

heated rectangular cavity, in which the position of the

heating element was varied. The same situation had been

experimentally investigated earlier by Turner and Flack

[11]. Gatheri et al. [12], simulated the three-dimensional

turbulent natural convection in a room with a heater

and a window on the same wall. Frederick [5] studied the

laminar natural convection in a cubical enclosure with

hot and cold sources located side by side on a vertical

wall. For the problems discussed in [5,12], a two-di-

mensional counterpart does not exist.

In this paper, we study the steady-state, laminar

natural convection in a cubical enclosure with two active

surfaces of unequal areas and imposed temperatures,

located on vertical, opposite walls. The hot source is

smaller than the cold one, which covers a vertical wall

completely. This fully three-dimensional problem will be

treated in the simplest possible geometry, with a ¯ush

mounted square heater centered on the corresponding

vertical wall, in order to minimize the number of geo-

metric parameters. The objectives of this paper are of

fundamental and applied nature. First, to provide the

heat transfer results for this case as a function of the

Rayleigh number in the laminar regime. Then the cri-

teria to characterize the transition from conduction to

convection regime will be examined. The transition will

be described in terms of the usual criteria and also by the

variations in an average ¯uid temperature in the en-

closure, in the range of the Rayleigh number covered.

An explanation of the heat transfer behavior will be

given in terms of the temperature ®elds and ¯ow pat-

terns, which vary with Ra. Finally, a delimitation of the

features that can be explained on two- and three-

dimensional grounds will be given.

2. Formulation

The physical situation is depicted in Fig. 1. A cubical

cavity of the side L contains air (Pr� 0.71). The hot

source is a non-protruding square sector of side s at

temperature TH, centered on the wall at X� 0. The wall

at X� 1 acts as a cold surface at temperature TC. All

other sectors of the cavity walls are adiabatic. The ratio

s/L will be given values of 0.3, 0.5 and 0.7. The case

s/L� 1.0 is the side wall heated cavity problem, and will

be referred to as the test problem, whose solution has

been extensively reported [1,2].

Steady-state results will be given. Earlier evidence [2],

shows that in the test problem, time-dependent ¯ows

may occur at the Rayleigh numbers slightly above 106

with air as the test ¯uid. The dimensionless governing

equations of continuity (1), momentum (2) and energy

(3) in their steady-state form for laminar ¯ow of an

incompressible Boussinesq ¯uid inside the cavity are,

respectively:

oUj

oXj
� 0; �1�

Uj
oUi

oXj
� ÿ oP

oXi
� Pr

o2Ui

oXjoXj
� RaiPrH; �2�

Uj
oH
oXj
� o2H

oXjoXj
; �3�

where Ra2�Ra is the Rayleigh number and

Ra1�Ra3� 0. The cube side is retained in the de®nition

of the Nusselt and Rayleigh numbers for all values of s/L

in order to allow an easy comparison with the test case.

The equations are made dimensionless using L, a, q and

DT as reference quantities. All velocities are zero at the

walls. The dimensionless temperature H is de®ned to

have values of 0.5 and )0.5 at the hot and cold sources,

respectively. The temperature boundary conditions are:

Nomenclature

C constant in Nu±Ra relationships

g gravity constant

L cavity side

n exponent in Nu±Ra relationships

Nu overall Nusselt number

Pr Prandtl number (m=a)

Ra Rayleigh number (gbDTL3=ma)

s side of the square hot sector

TH, TC hot and cold wall temperatures

U, V, W dimensionless velocities in the X, Y and Z

directions, respectively

X, Y, Z dimensionless coordinates

Greek symbols

a thermal di�usivity

b thermal expansion coe�cient

DT overall temperature di�erence,

(TH ) TC)

H dimensionless temperature

m kinematic viscosity

q density

Subscripts

i, j indexes for velocities and coordinates.

U1�U, U2�V, X1�X, X2�Y, etc.

av average

max maximum value (in velocities)
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1. H � 0:5 at X � 0; �1ÿ s=L�=26 Y 6 �1� s=L�=2,

�1ÿ s=L�=26 Z6 �1� s=L�=2.

2. H � ÿ0:5 at X � 1.

3. oH=oXi � 0 elsewhere on the walls.

3. Numerical method

The standard SIMPLER method with a power law

discretization was used. Staggered grids were deployed

with vertical velocity nodes (V) at the walls Y� 0 and

Y� 1 (bottom and top). The planes X� 0, X� 1 (left

and right) and Z� 0, Z� 1 (front and back) contain U

and W nodes, respectively. No temperature and pressure

nodes are provided on the physical borders of the en-

closure, but external (virtual) nodes for these variables

are added in six planes parallel to the physical borders at

a half control volume distance from them.

On the active sectors, temperatures were ®rst im-

posed on the external nodes. For solving the energy

equation, the half control volume outside the physical

border was assigned an in®nite di�usion coe�cient. The

discretization coe�cient linking the temperature of the

®rst internal node to the temperature of the neighboring

virtual node was calculated using Patankar's harmonic

mean rule [13]. In this way, the externally imposed

temperature was rapidly transferred to the physical

border during the iterative solution of the energy equa-

tion. Similar procedures were used to evaluate the dis-

cretization coe�cients in the momentum equations, for

U at the horizontal and back/front walls, for V at the

right/left and back/front walls, and for W at the hori-

zontal and right/left walls. Adiabaticity conditions were

imposed by equating the temperatures of consecutive

grid points at both sides of the physical border.

Uniform, staggered grids of 62� 62� 62 nodes were

used throughout. These grids provided accurate, steady

solutions to the test problem for Rayleigh numbers of

103±107. Excellent agreement was found with the results

by Fusegi et al. [1]: at Ra� 106, the maximum velocities

U and V in the plane of symmetry Z� 0.5 di�ered from

the ones in [1] by +0.46 and )2.23%, respectively, while

the overall Nusselt number di�ered by 0.74%. No signs

of numerical instability were found in the whole ranges

of Ra and s/L. The solutions converged to apparently

steady values in all variables. Convergence was assumed

to be obtained when the overall Nusselt numbers from

two consecutive general iterations did not di�er by more

than 1:5� 10ÿ5. The overall Nusselt number was com-

puted on the vertical mid-plane X� 0.5, to avoid pos-

sible heat ¯ux singularities at the perimeter of the hot

sector.

4. Results and discussion

The ¯ow and temperature ®elds are completely

symmetric with respect to the plane Z� 0.5. A descrip-

tion of these ®elds will be better understood if we ®rst

examine the overall parameters and then, we describe

the ¯ow mechanisms. Fig. 2 shows curves of the Nusselt

vs Rayleigh number for s/L� 0.3, 0.5 and 0.7, together

with the curve for the test problem, (Fusegi et al. [1],

s/L� 1.0). For the s=L < 1, the overall Nusselt numbers

are lower than those for the test problem. Nu always

grows with s/L at a given Ra. Fusegi's results form a

single straight line in a log-log plot over the Rayleigh

number range (103±107), suggesting a predominantly

convective behavior. The Nusselt numbers for other

values of s/L (specially s/L� 0.3 and 0.5) increase slowly

Fig. 1. Physical situation and coordinates.
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at low Ra, suggesting a delay in the transition to the

convective regime. From the overall heat transfer curves,

a de®nite point of transition from conduction to con-

vection regime is di�cult to assign.

In problems with active surfaces of imposed tem-

peratures and di�erent areas, an arithmetic average

(Hav) of the dimensionless temperatures in the enclosure

nodes, excluding the walls, can be de®ned. This average

is not directly related to the concept of the ``cup mixing

temperature'' used in channel ¯ow. Even though in the

test problem Hav would be constant and equal to the

arithmetic average of the active wall temperatures at all

Rayleigh numbers, when active areas are unequal, Hav

varies with Ra and takes values nearer to the tempera-

ture of the bigger active surface. We postulate that the

sensitivity of Hav to changes in Ra makes it a useful and

concise index of the state of the temperature ®eld. Fig. 3

shows the variation of Hav with Ra for the three values

of s/L. For a given Ra, Hav grows with s/L, as expected.

In the high Ra limit, Hav tends to the arithmetic average

of the temperatures of the sources, irrespective of their

areas. In analogy with a stirred tank, the rapid growth of

Hav with Ra re¯ects the high degree of ¯uid mixing, and

the highly convective ¯ow that exist at high Ra. How-

ever, starting from the lower Rayleigh number limit

(103), Hav shows an initial decrease with increasing Ra,

passes through a minimum at Ra� 105 for all values of

s/L, then increases with further increments in Ra. The

initial decrease of Hav is counter-intuitive, and depends

on the di�erence in the active areas, as it does not occur

at all in the test case. Also, the e�ect is not speci®cally

related to the three-dimensionality of the ¯ow. This is

suggested by the fact that two-dimensional runs con-

ducted for a square cavity with a hot strip of s/L� 0.5

centered on a vertical wall, and a fully cooled opposite

wall, resulted in average temperatures which also had a

minimum at Ra� 105 (Table 1). The variation of Hav

with Ra in these test runs was less pronounced than in

the three-dimensional case. If Hav is used as an index of

the temperature ®eld, the analogy that it reveals between

the three-dimensional and two-dimensional cases on the

one hand, and the symmetry of the ¯ow and temperature

®elds with respect to the plane Z� 0.5 on the other,

make it possible to characterize the evolution of the

temperature ®eld with Ra by studying these ®elds in the

symmetry plane.

Undoubtedly, the behavior of Hav can be related to

the energy transfer as seen by the close correspondence

between Figs. 2 and 3. Also, its variations re¯ect the

degree of thermal strati®cation in the enclosure, as

shown in the following. Fig. 4 shows the velocity vectors

at Z� 0.5 for three Rayleigh numbers, for s/L� 0.3, in

the three-dimensional case. The ¯ow in this plane con-

sists of a main circulation cell with secondary loops. The

main cell is similar to the one observed in the test

problem (de Vahl Davis circulation), especially at

Ra� 103 (Fig. 4(a)). However, at a high Rayleigh

number, the di�erence in the active areas causes a

shorter ascending path of the ¯uid adjacent to the hot

Fig. 3. Average ¯uid temperature as a function of Ra. Curves

from top to bottom: s/L� 0.7, 0.5 and 0.3.

Table 1

Two-dimensional average temperature and Nusselt number

results for a square cavity with a heated strip of s/L� 0.5 as a

function of the Rayleigh number

Ra Hav Nu

103 )0.0509 1.0003

104 )0.0806 1.8309

105 )0.0987 3.4549

4� 105 )0.0902 5.1668

106 )0.0753 6.7876

Fig. 2. Overall Nusselt number as a function of Ra. Curves

from top to bottom: s/L� 1.0 (test problem), s/L� 0.7, 0.5 and

0.3.
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sector. In the central zone, the ¯uid is almost stagnant,

as in the test problem. The cold ¯uid expands vertically

after leaving the cold wall, and is directed toward the

zone of positive buoyancy. As in the test problem, cen-

ters of rotation develop at the upper left and lower right

of the enclosure (Figs. 4(b) and (c)).

Fig. 5 shows isotherms at Z� 0.5 for three Rayleigh

numbers and s/L� 0.3. At Ra� 103, (Fig. 5(a)) iso-

therms closely resemble the pattern observed in the test

problem at low Ra. They are nearly vertical in most of

the enclosure, they de¯ect in the direction of movement,

and the di�erences with respect to the test case

are con®ned to the vicinity of the hot source, from

where heat ¯ows radially by conduction. At Ra� 105

(Fig. 5(b)), the increase in vertical velocities has de®ned

zones of advancing motion at the top and bottom of the

enclosure, as seen in Fig. 4(b), where heat transfer is

essentially by convection, with thermal strati®cation and

boundary layers on the active zones, especially on the

hot one. In this strati®ed pattern, the isotherms for

H > 0 are con®ned to a very small region near the wall

containing the hot source. The cross-sectional area oc-

cupied by the ¯uid at temperatures in excess of H� 0 is

clearly smaller in Fig. 5(b) than in Fig. 5(a). Therefore,

the average ¯uid temperature for the whole enclosure is

lower than in Fig. 5(a).

U and V velocities for this case are still low (Table 2),

because of the reduced area of the hot source. Most of

the conduction paths in a large central zone have been

nearly suppressed as the horizontal temperature gradi-

ents are extremely low because of strati®cation. This

fact, added to the evidence of a still weak convection,

not strong enough to promote a high convective con-

tribution to heat transfer, accounts for the reduction in

average temperature when the Rayleigh number in-

creases from 103 to 105. The weakness of the convection

Fig. 4. Velocity vectors in the plane Z� 0.5, s/L� 0.3: (a) Ra� 103; (b) Ra� 105; (c) Ra� 106.
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generated at Rayleigh numbers up to 105 can be dem-

onstrated by noting that the maximum vertical and

horizontal velocities in the Z� 0.5 plane at s=L < 1 are

lower than in the test problem. (Table 2). The reduction

in the U velocity component relative to the test case,

accounts for the lower overall heat transfer observed.

The U value is, however, higher than that for the test

problem from a Rayleigh number of 106.

A change of regime occurs at Ra > 105. As Fig. 5(c)

shows, at Ra� 106, the zone of temperatures above 0.0

has greatly increased in area, and the isotherm H� 0 is

included as one of the strati®ed temperature levels. The

Fig. 5. Isotherms in the plane Z� 0.5, s/L� 0.3: (a) Ra� 103; (b) Ra� 105; (c) Ra� 106.

Table 2

Values of the maximum U and V velocities in the mid-plane Z� 0.5 for di�erent values of s/L as a function of the Rayleigh number

Ra s/L� 0.3 s/L� 0.5 Test

U V U V U V

103 2.0317 2.7616 2.8744 3.3107 3.5013 3.5172

104 11.8233 16.3610 14.7987 18.8105 16.9618 18.9757

105 27.7406 54.2463 35.9146 63.2177 39.1161 65.8418

106 58.3830 151.6931 79.6175 182.0397 70.8639 218.0688
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maximum U has increased with respect to its counter-

part for the test problem (Table 2). Conduction is still

less signi®cant than in Fig. 5(b). The convective process

has gained importance, and re¯ects itself in increases in

average temperature and heat transfer. Similar charac-

teristics are found for the isotherms near the lateral walls

(not shown).

To sum up, at Ra� 103, heat ¯ows between the

sources by conduction using all possible paths available

in the enclosure volume. At a slightly higher Ra, incip-

ient convection sets in, in which directions of convective

heat ¯ow appear at the enclosure top and bottom. This

causes thermal strati®cation and suppression of con-

duction paths. The resulting heat transfer between the

sources now depends almost entirely on the localized

zones of advance of the ¯uid from the hot towards the

cold source and vice-versa. These advance velocities are

still weak, so they do not compensate for the loss of the

conduction contribution to heat transfer. This fact is

re¯ected in the decrease in average ¯uid temperature. In

the test problem, the decrease in conduction during the

transition is exactly compensated by increases in con-

vection, and this gives the Nu±Ra curve the appearance

of a fully convective regime from Ra� 103 on.

From the above, it is necessary to admit that a fully

convection-dominated regime exists only from a Ray-

leigh number of 105 on. Nusselt±Rayleigh relationships

in this convective regime are given in Table 3. Fusegi's

results and our results in the ranges of Ra for which

convection prevails can be represented by power laws of

the type Nu�C Ran. The exponents for s/L� 1 and 0.7

are essentially equal. It is therefore expected that for

s=L > 0:7, there will be only small variations in C. This

is not the case with the lower values of s/L, for which a

de®nite increase in the Rayleigh number exponent with

s/L is observed. An explanation of this e�ect is needed.

The conclusions so far arise from an analysis of tem-

peratures and velocities in the plane Z� 0.5, and hold for

features which are common to our problem and to its

nearest two-dimensional counterpart. Now, it is necessary

to consider the three-dimensional aspects of the ¯ow.

Isotherms in planes parallel to the hot surface are shown

in Figs. 6(a)±(c), for s/L� 0.3. They show that buoyancy is

generated by the hot surface, but not by its passive sides.

In the isograms at X� 0.025, the source is delineated

by the isotherms. At low Ra (Fig. 6(a)), the isotherms

show radial conduction from the hot source, while at a

higher Ra (Fig. 6(b)) conduction has been suppressed.

Strong temperature gradients appear at the heater bot-

tom, where cold ¯uid reaches the hot zone. Isotherms at

the sides of the hot source are strati®ed, suggesting that

the ascending movement, which is very intense, is sig-

ni®cant only in front of the heater. The anticipated

temperature symmetry with respect to Z� 0.5 is demon-

strated by Figs. 6(a) and (b). Isotherms near the cold

wall show a regular pattern of strati®cation (Fig. 6(c)).

Fig. 7 shows velocity vectors at s/L� 0.3. The ¯ow

pattern is symmetric with respect to Z� 0.5. The main

cell is similar to the one observed in the test problem, as

already seen in Fig 4. At low Ra (Fig. 7(a)), the veloci-

ties, which are very low, are fairly uniform near the hot

wall, except at the sides Z� 0 and Z� 1 because of wall

friction. This pattern changes notoriously at higher Ra

(Figs. 7(b) and (c)), where the high buoyancy exerted by

the heater at X� 0, causes high velocities of ascension

only in front of it, while near the passive sides, the

velocities are much lower. Descending velocities are

rather uniform near X� 1, where there is negative

buoyancy all across the wall (Fig. 7(d)).

In Figs. 4(b) and (c), an upward movement of the

cold stream returning to the hot wall from the cold one

was seen. The locally low level of buoyancy below the

hot sector allows this vertical expansion. The general

circulation pattern is deformed relative to the test case,

because at high Ra, the ascending ¯ow near the hot wall

accommodates to the size and shape of the hot sector,

and the zone of descending ¯ow has essentially the di-

mensions of the cold zone (Figs. 7(a)±(d)). Therefore,

vertical and lateral expansions and contractions of the

stream connecting the active zones take place. This

distortion of the main circulation is more notorious at

low values of s/L and at high Ra. Fig. 8 shows a suc-

cession of velocity patterns at Ra� 106, at increasing

values of X. In the upper part of the diagrams, for low

values of X, the ¯uid heated by the hot wall expands

laterally outwards as it advances along X. This expan-

sion is still very marked at X� 0.5. After the expansion

is completed (X > 0:5), the hot ¯uid ¯ows nearly parallel

to the X axis, to reach the cold wall, at which the ¯ow

descends all along the Z axis (Fig. 7(d)). The return of

the cooled ¯uid from the enclosure bottom takes place

as a combination of ascending movement (Fig. 4) and

lateral inward displacement toward the Z� 0.5 plane

(Figs. 8(b) and (c)). The ¯uid below Y� 0.5 converges to

the hot sector, to be ultimately raised by the buoyancy

force at the hot source, to start the cycle again. This

behavior is re¯ected in the extreme values of velocities.

For all values of s/L, at Ra� 103 and 104, the absolute

maximum velocities U and V occur at the plane of

symmetry Z� 0.5, at the lines de®ned by this plane and

the planes X� 0.5 and Y� 0.5, respectively, as in the test

problem. For higher Ra, the maxima, while still located

Table 3

Coe�cients and exponents of the relationship Nu�C Ran in

the convective regime as a function of s/L

Case C n Ra range

Fusegi et al. [1] 0.1309 0.3040 103±107

s/L� 0.7 0.1121 0.2988 105±107

s/L� 0.5 0.0564 0.3276 105±107

s/L� 0.3 0.0115 0.4136 105±107
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in the plane Z� 0.5, are displaced to other positions

within that plane (X < 0:5), and show great increases

with respect to the velocity values at the more symmetric

positions detailed above. These e�ects are caused by the

expansion/contraction behavior of the main circulation

cell.

The three-dimensionality of the ¯ow, shown in the

above ®gures for Ra� 106, develops during the transi-

tion (1036Ra6 105). As Ra is increased, the lateral

velocity component (W), which is small at low Ra,

increases markedly, becoming comparable with the

maximum velocity components U and V (Table 4). Be-

yond Ra� 105, however, the percent increase in W with

respect to U and V is low. This indicates that a ®nal

degree of ¯uid mixing in the enclosure has been nearly

attained about Ra� 105. This is an additional argument

to support the claim that a fully convective regime starts

at that particular value of Rayleigh number. The in-

crease in W with Ra is caused by the fact that, as

buoyancy force increases, the ¯ow raised by the hot

source and restricted by the horizontal wall, ®nds an

additional way to leave the hot zone, which is a lateral

movement toward the planes Z� 0 and Z� 1. As Ra

grows, the lateral diversion of this ¯ow gains im-

portance, (Figs. 7(a)±(c)) aided by the reduced buoyancy

at both sides of the hot source. This lateral movement,

superposed to advance along the X-direction, will ulti-

mately be responsible for the mixing of the ¯uid in the

whole enclosure, and manifests itself as increases in Hav

and Nusselt number.

Fig. 6. Isotherms in the vicinity of the active walls, for s/L� 0.3: (a) X� 0.025; Ra� 103; (b) X� 0.025, Ra� 106; (c) X� 0.975,

Ra� 106.
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The absolute maxima in velocities in the test prob-

lem for Ra� 106 are U� 127.602 and V� 214.608 (our

results). At the same Ra in our problem, as a result of

expansions and contractions, the maximum U is higher

than, or comparable to, that of the test problem for

s/L� 0.5 and 0.3 (140.657 and 119.045, respectively).

Conversely, the maximum V in the present problem

(201.595 and 195.635) is always lower than that in the

test problem. As vertical velocity is mainly determined

by the heater height, values higher than those for the

test case cannot appear in our problem at any given

Ra. However, the horizontal velocities are determined

by the inertia forces, therefore, as the stream is con-

tracted to reach the heater, the accommodation of the

¯ow for returning to the cold surface, will generate

higher X-component velocities near the top of the hot

zone.

In the test problem, [1,2] a regime change, consisting

of an increase in ¯ow three-dimensionality, also occurs

around Ra� 105. At Ra < 105, the ¯ow is nearly two-

dimensional, with maximum U and V in Z� 0.5. At

higher Ra, three-dimensional e�ects become important,

and the maxima in U and V occur near the lateral walls.

This results from the fact that, at high Rayleigh num-

bers, with high velocities, the ¯ow can no longer keep

uniform conditions along Z: zero velocities appear at

Z� 0 and Z� 1, because of wall friction. Some ¯uid is

therefore displaced inwards, where it is dragged by the

main motion and contributes to the maximum velocities

found outside the plane of symmetry. This e�ect does

not propagate to the mid-plane Z� 0.5, where velocities

keep the levels of the two-dimensional problem,

although slightly reduced. As already said, in the

test problem, the Nu±Ra curves suggest a convective

Fig. 7. Velocity vectors in the vicinity of the active walls, for s/L� 0.3: (a) X� 0.025, Ra� 103; (b) X� 0.025, Ra� 105; (c) X� 0.025,

Ra� 106; (d) X� 0.975, Ra� 106.
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behavior from Ra� 103. This is because equally sized

active sources allow a gradual change from conductive

to convective dominance. The present case, character-

ized by early suppression of conduction and slow de-

velopment of convection (in the range of Ra) because of

the reduced buoyancy, only allows to consider the re-

gime as truly convective from a Rayleigh number of 105

on.

5. Conclusions

The natural-convection in cubical enclosures with

vertical, square, frontally opposed sources of di�erent

sizes and temperatures was studied. For all values of the

heater side to cavity side ratio, a symmetric, single cir-

culation cell connects both sources. The transition to

convective regime occurs in the range of Ra from 103 to

105. At low Rayleigh numbers, an imbalance between

the superposed e�ects of conduction and incipient con-

vection is re¯ected in a slow approach to the convective

Fig. 8. Velocity vectors at various positions along the X-axis, for s/L� 0.3 and Ra� 106: (a) X� 0.34; (b) X� 0.5; (c) X� 0.64.

Table 4

Maximum lateral velocities (W) at di�erent Rayleigh numbers

as a percentage of the maximum U and V velocities for s/L� 0.3

as a function of the Rayleigh number

Ra Wmax as a percent of:

Umax Vmax

103 11.82 8.99

104 27.87 19.08

105 56.26 32.06

4� 105 59.85 35.45

106 61.17 37.56
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regime. The transition ends at Ra � 105. In the test

problem, a change of regime has also been found at this

particular value of Rayleigh number. At Ra > 105, a

high degree of ¯uid mixing is observed in the enclosure,

caused by fully three-dimensional convection. At high

Ra, the circulation undergoes changes in cross-section,

adapting itself to the size of the sources with changes in

¯ow direction, which at Ra > 105, result in a highly

three-dimensional ¯ow, with high lateral velocity com-

ponents. This ¯ow pattern does not allow heat transfer

levels as high as in the test case, but promotes ¯uid

mixing in the whole enclosure.
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